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Abstract
The dynamics of a central qubit system coupled to an isotropic ferromagnetic
Lipkin–Meshkov–Glick spin bath at nonzero temperature is studied. We
derive exactly the reduced density matrix and investigate the pairwise thermal
entanglement, the coherence and the concurrence of the central spins. Through
the behavior of these quantities, we show that at very low temperatures the
dynamics is sensitive to the presence of the critical point of the environment.

PACS numbers: 03.65.Yz, 75.10.Jm, 05.10.−a

1. Introduction

Quantum phase transitions (QPTs) are associated with a qualitative change in the ground
state of a many-body quantum system, at the absolute zero temperature, when some relevant
parameter varies across its critical value [1]. Their manifestation in many experimental results
on the cuprate superconductors and organic conductors stimulated much attention during the
last decade. Recently, the relation between the entanglement and the quantum phase transitions
has been the subject of many studies [1–10]. The critical behavior of the former was proposed
as a tool for detecting the presence of QPTs in multi-spin systems. Most of the investigations
have dealt with the zero-temperature dynamics near the critical point at which the transition
occurs. However, it is believed that quantum phase transitions leave their fingerprints at
temperatures close to the zero absolute. Generally speaking, at such low temperatures, the
long-time collective dynamics of a quantum many-body system is investigated using the
concepts of order parameters and quasiparticles which lead, however, to a semiclassical
description of the dynamics [11]. Moreover, at nonzero temperatures, quantum correlations
are suppressed by the thermal fluctuations: there exits a threshold temperature above which
the thermal entanglement ceases to exist. Thus, a deep understanding of the dynamics of
multi-spin systems at low temperatures is of theoretical and experimental significance.
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The Lipkin–Meshkov–Glick (LMG) model [12–14], initially introduced in nuclear
physics, has found many physical applications such as the Josephson effect and the two-
mode Bose–Einstein condensate [15–17]. This model was extensively used to investigate the
connection between the zero-temperature entanglement and QPTs [18–23]. The Hamiltonian
of the isotropic LMG model with N spins subjected to a magnetic field of strength h is explicitly
given by

H = g

2N

N∑
i<j

(
σ i

xσ
j
x + σ i

yσ
j
y

)
+

h

2

N∑
i

σ i
z , (1)

where g is the coupling constant and �σ i = 2�Si is the Pauli operator corresponding to the
particle labeled by i. The above Hamiltonian can be cast, up to an additive constant, into the
form

H = g

N

(
J 2 − J 2

z

)
+ hJz, (2)

where �J = ∑N
i

�Si is the total angular momentum of the multi-spin system. The standard basis
of H is composed of the state vectors |j,m〉 common to J 2 and Jz such that 0 � j � N/2
and −j � m � j (we set h̄ = 1). In the ferromagnetic case, i.e. g < 0, the ground state and
the first exited state belong to the subspace C

N+1 spanned by the eigenvectors |N/2,m〉. The
model Hamiltonian displays a second-order phase transition at the critical point |hc| = −g.
Indeed, for |h| > |hc|, the ground state is unique and is equal to the fully polarized state
|N/2,−sign(hc)N/2〉 (symmetric phase), where sign(x) designates the sign of x. In contrast,
in the domain |h| < |hc|, the ground state depends on the coupling constant g (symmetry
broken phase); its explicit form is given by

∣∣N/2, I
(

hN
2g

)〉
, where I (x) denotes the round value

of x.
In this paper, we apply the general formalism of open quantum systems to investigate the

dynamics at low temperatures near the critical point of the isotropic LMG model. The idea
consists of deriving the reduced density matrix of a central spin system which is coupled to a
spin bath governed by the Hamiltonian (1). In section 2, we derive the one-qubit and two-qubit
thermal reduced density matrix and investigate the pairwise thermal entanglement. In section 3,
we study the time evolution of the coherence and the entanglement of, respectively, a single
and a two spin 1

2 particles coupled via Heisenberg or Ising interactions to the LMG spin bath.
We end the paper with a short summary.

2. Thermal reduced density matrix

Let ρN(0) denote the total density matrix of the multi-spin system whose dynamics is governed
by the Hamiltonian (1). The state of any subsystem with m spins is fully described by its
reduced density matrix, obtained by eliminating the degrees of freedom corresponding to the
remaining N − m particles. Note that H is invariant with respect to the exchange of sites;
it follows that the reduced density matrix should be independent of the choice of the central
particles. In this paper, we assume that our multi-spin system is in thermal equilibrium at
arbitrary temperature T. The corresponding total density matrix is given by the Gibbs thermal
state

ρN(0) = exp (−H/T )

trN {exp(−H/T )} , (3)

where the Boltzmann constant is set to 1 and Z = trN {exp(−H/T )} is the partition function.
Here, trN designates the trace with respect to the full set of the eigenvectors of H. In the
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following, we derive the reduced density matrix for both one and two central qubits. Without
loss of generality we suppose that g = −1, and we only consider positive values of h since
the spectrum of H is odd.

2.1. The one-particle reduced density matrix

First of all, it should be noted that the reduced density matrix can be obtained by directly
calculating the mean values of the operators J 2 and Jz with respect to the thermal state [24].
However, we shall proceed differently and use another method which allows us to investigate,
in a straightforward manner, the time evolution of a central qubit coupled to the isotropic LMG
bath (see the next section). Furthermore, one is usually seeking new techniques that lead to
exact analytical results.

Let us choose one arbitrary particle, whose spin vector operator is denoted by �S, and call
it central spin. The remaining N −1 particles can be viewed as a spin bath with a total angular
momentum �J . At this stage it is useful to decompose the total spin vector of the full system
as the sum of those corresponding to the central particle and the bath, namely,

�J = �S + �J , Jz = Sz + Jz. (4)

Then, one can easily show that the isotropic Lipkin–Meshkov–Glick Hamiltonian can be
rewritten in terms of the new spin operators as

H = g

N

[
J 2 − J 2

z +
1

2

]
+ h(Jz + Sz) +

g

N
[S+J− + S−J+] , (5)

where L± = Lx ± iLy . Hence the full system is equivalent to a central qubit coupled to a spin
bath through Heisenberg XY interactions. Similarly, the spin space of the composite system,
(C2)⊗N , can be decomposed as

C
2 ⊗ (C2)⊗N−1 = C

2 ⊗
⎡
⎣ N−1

2⊕
j

ν(N − 1, j)C2j+1

⎤
⎦ , (6)

where [25]

ν(N, j) =
(

N
N
2 − j

)
−
(

N
N
2 − j − 1

)
. (7)

The basis of the latter space is formed by the vectors |k〉 ⊗ |j,m〉, where Sz|k〉 = − (−1)k

2 |k〉
(k ∈ {0, 1}), J 2|j,m〉 = j (j + 1)|j,m〉 and Jz|j,m〉 = m|j,m〉. Note that in equation (6),
the summation over j takes into account whether N is odd or even. Also, due to the last term
on the right-hand side of equation (5), the Hamiltonian operator H is no longer diagonal in
this new basis.

The method we adopt here is based on the fact that the operator � = ZρN(0) = exp[−βH ]
where β = 1/T satisfies the following equation:

∂

∂β
� = −H�. (8)

In the standard basis of C
2, the above operator can be written as � = ∑

k,� �k�|k〉〈�|.
Consequently, equations (8) and (5) yield a set of four coupled first-order differential equations,
namely,

∂

∂β
�11 = −

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz − 1

2

)]
�11 − g

N
J+�21, (9)
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∂

∂β
�21 = − g

N
J−�11−

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz +

1

2

)]
�21, (10)

∂

∂β
�22 = −

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz +

1

2

)]
�22 − g

N
J−�12, (11)

∂

∂β
�12 = − g

N
J+�22 −

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz − 1

2

)]
�12. (12)

The latter can be transformed into diagonal ones by introducing the following transformations
[26]:

�11 = exp

{
−β

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz − 1

2

)]}
V11, (13)

�21 = J− exp

{
−β

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz − 1

2

)]}
V21, (14)

�22 = exp

{
−β

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz +

1

2

)]}
V22, (15)

�12 = J+ exp

{
−β

[
g

N

(
J 2 − J 2

z +
1

2

)
+ h

(
Jz +

1

2

)]}
V12. (16)

Using the commutation relations [Jz, J±] = ±J± and
[
J 2

z ,±] = ∓J±(2Jz ± 1), it can be
shown that the operator variables Vij satisfy

∂

∂β
V11 = − g

N
J+J−V21,

∂

∂β
V21 = − g

N
V11 − g

N
(2Jz − 1)V21, (17)

∂

∂β
V22 = − g

N
J−J+V12,

∂

∂β
V12 = − g

N
V22 +

g

N
(2Jz + 1)V12. (18)

Combining equations (17) leads to the following second-order differential equation:

V̈ 21 + 2
g

N

(
Jz − 1

2

)
V̇21 −

( g

N

)2
J+J−V21 = 0. (19)

It is worth mentioning that limT →∞ � = limβ→0 � = IN , where IN denotes the 2N -dimensional
unit matrix. Therefore, Vii(β = 0) = IN−1 and Vij (β = 0) = 0 for i 	= j . Taking into account
the last conditions, it is easy to show that the general form of the solutions of equation (19) is
given by

V21 = 2A e− gβ

N
(Jz− 1

2 ) sinh

⎡
⎣ |g|β

N

√(
Jz − 1

2

)2

+ J+J−

⎤
⎦ , (20)

where A is a yet-to-be-determined diagonal operator. It is then sufficient to integrate the right-
hand side of the first equation in (17) to obtain the exact form of V11. Taking into account the
values of Vij at β = 0, one can find that A = −

√
(g/N)2[(Jz − 1/2)2 + J+J−]/(2g), and thus

by virtue of the transformations (13) and (14) we obtain

�11 = e−βG1

⎧⎨
⎩cosh

⎡
⎣ |g|β

N

√(
Jz − 1

2

)2

+ J+J−

⎤
⎦

+
sign(g)

(
Jz − 1

2

)
√(

Jz − 1
2

)2
+ J+J−

sinh

⎡
⎣ |g|β

N

√(
Jz − 1

2

)2

+ J+J−

⎤
⎦
⎫⎬
⎭ , (21)
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�21 = sign(−g)J− e−βG1
1√(

Jz − 1
2

)2
+ J+J−

sinh

⎡
⎣ |g|β

N

√(
Jz − 1

2

)2

+ J+J−

⎤
⎦}, (22)

where G1 = g

N
(J 2 − J 2

z − 1/2) + (h + g

N
)
(
Jz − 1

2

)
and sign(g) designates the sign of the

coupling constant g.
Similarly, it can be shown that V12 satisfies

V̈ 12 − 2
g

N

(
Jz +

1

2

)
V̇12 −

( g

N

)2
J−J+V12 = 0. (23)

Following the same method presented above, we find that

�22 = e−βG2

⎧⎨
⎩cosh

⎡
⎣ |g|β

N

√(
Jz +

1

2

)2

+ J−J+

⎤
⎦

+
sign(−g)

(
Jz + 1

2

)
√(

Jz + 1
2

)2
+ J−J+

sinh

⎡
⎣ |g|β

N

√(
Jz +

1

2

)2

+ J−J+

⎤
⎦
⎫⎬
⎭ , (24)

�12 = sign(−g)J+ e−βG2
1√(

Jz + 1
2

)2
+ J−J+

sinh

⎡
⎣ |g|β

N

√(
Jz +

1

2

)2

+ J−J+

⎤
⎦
⎫⎬
⎭ , (25)

where G2 = g

N

(
J 2 − J 2

z + 1/2
)

+
(
h − g

N

)(
Jz + 1

2

)
.

In order to obtain the reduced density matrix corresponding to the central spin- 1
2 particle,

we need to perform the trace in the space spanned by the common eigenvectors of J 2 and Jz.
This task can be carried out with the help of the relation

f̃ = trN−1{f (J 2, Jz)} =
∑
j,m

ν(N − 1, j)f [j (j + 1),m], (26)

where f is some function of J 2 and Jz. Since the trace of the lowering and raising operators
is identically zero, we can immediately infer that the reduced density matrix is diagonal in the
standard basis of C

2, namely,

ρ = 1

Z

(
�̃11 0
0 �̃22

)
, (27)

where the elements �̃ii are calculated using equation (26). It follows that the mean value of
Sz, the purity and the von Neumann entropy corresponding to ρ are, respectively, given by
〈Sz〉 = (

1
Z

(
�̃22 − �̃11

))/
2z, P = tr ρ2 = 1

Z2

(
�̃2

11 + �̃2
22

)
and S(ρ) = −(�̃11/Z) ln(�̃11/Z) −

(�̃22/Z) ln(�̃22/Z).
Figures 1–3 display the variation of the above quantities as a function of the strength of

the magnetic field at different values of the number of spins. We can see that 〈Sz〉 vanishes
for h = 0 regardless of the values of N and T. This follows from the fact that, when h is
equal to zero, the operator H reduces to Heisenberg XY Hamiltonian, which is invariant under
rotations with respect to the z-direction. The above operator is clearly even function of Jz,
which is also the case for the corresponding density matrix, ρN(0): the thermal average of Jz

is identically equal to zero.
From the above figures one can also see that, in the symmetry broken phase, starting from

some value h0 in the neighborhood of the critical point hc = 1, the von Neumann entropy

5
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
− 0.5

− 0.4

− 0.3

− 0.2

− 0.1

0.0

h

<S
z>

Figure 1. The dependence of the mean value of Sz on the strength of the magnetic field at different
values of the number of spins: N = 10 (solid line), N = 20 (dashed line) and N = 30 (dotted
line) with T = 0.01.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1.0

h

P

Figure 2. The dependence of the mean value of the purity of the reduced density matrix on the
strength of the magnetic field at different values of the number of spins: N = 10 (solid line),
N = 20 (dashed line) and N = 30 (dotted line) with T = 0.01.

vanishes whereas 〈Sz〉 and P become identically equal to −0.5 and 1, respectively. This means
that all the spins are pointing in the direction of the magnetic field. Obviously, the above
quantities maintain these values in the symmetric phase since the ground state of the spin
system is equal to the fully polarized state vector |N/2,−N/2〉. Furthermore, it can be seen
that the variation of 〈Sz〉, P and S(ρ) is accompanied in the broken phase by some kind of
oscillations which are more appreciable at small values of N. This can be explained by the
dependence of the ground state |N/2,−I (hN/2)〉, which exhibits at low temperatures the
largest statistical weight, on the strength of the magnetic field. Clearly, the quantity I (hN/2)

has the structure of a step function with respect to h; as T increases, the mean value of Sz

slightly deviates from −I (hN/2)/N . A similar behavior is also observed for the purity and
the von Neumann entropy. As we increase the number of spins and/or the temperature T, the

6
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

h

S(
ρ)

Figure 3. The von Neumann entropy as a function of the strength of the magnetic field at different
values of the number of spins: N = 10 (solid line), N = 20 (dashed line) and N = 30 (dotted
line) with T = 0.01.

0 1 2 3 4 5
− 0.5

− 0.4

− 0.3

− 0.2

− 0.1

0.0

h

<S
z>

Figure 4. The mean value of Sz as a function of the strength of the magnetic field at different
values of the temperature: T = 0.1 (solid line), T = 0.4 (dashed line) and T = 0.8 (dotted line)
with N = 300.

oscillations completely disappear. Also, we observe that h0 → hc for N → ∞ and T → 0,
as expected, since in this limit I (hN/2)/N ≈ h/2 . The behavior of the above quantities at
large N is shown in figures 4–6.

2.2. The two-particle reduced density matrix, pairwise thermal entanglement

Next, consider entanglement properties of the isotropic Lipkin–Meshkov–Glick model at
temperatures close to the zero absolute. The relevant quantity we shall look for is the two-spin
reduced density matrix, ρ. A knowledge of the latter enables one to quantify the pairwise
thermal entanglement between the pairs of spin- 1

2 particles. The simplest measure we can use

is the so-called concurrence, explicitly defined by C(ρ) = max
{
0, 2 max[

√
λi] −∑4

i=1

√
λi

}
7
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0 1 2 3 4 5
h

0.5

0.6

0.7

0.8

0.9

1

P

Figure 5. The dependence of the purity on the strength of the magnetic field at different values
of the temperature: T = 0.1 (solid line), T = 0.4 (dashed line) and T = 0.8 (dotted line) with
N = 300.
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h

0

0.2

0.4

0.6

0.8

1

S
 (ρ

)

Figure 6. Variation of the von Neumann entropy with the strength of the magnetic field at different
values of the temperature: T = 0.1 (solid line), T = 0.4 (dashed line) and T = 0.8 (dotted line)
with N = 300.

[27], where λi are the eigenvalues of the operator ρ(σy⊗σy)ρ
∗(σy⊗σy). It is worth mentioning

that due to the invariance with respect to exchange of sites, the two-spin reduced density matrix
in the space C

2 ⊗ C
2 takes the form

ρ =

⎛
⎜⎜⎝

a− 0 0 0
0 b c 0
0 c b 0
0 0 0 a+

⎞
⎟⎟⎠ , (28)

where, a±, b and c are real numbers. The fact that c is real ensures that the reduced
density matrix is diagonal in the space C

3 ⊕ C ≡ C
2 ⊗ C

2 spanned by the vectors
{|1,−1〉, |1, 0〉, |1, 1〉, |0, 0〉} [25]. The method presented in the previous subsection can
also be applied here to derive the explicit form of ρ; the results are presented in the appendix.

8



J. Phys. A: Math. Theor. 41 (2008) 135302 Y Hamdouni

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.05
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0.20

h

C
(ρ

)

Figure 7. The pairwise thermal entanglement as a function of h at different values of N: N = 10
(dotted line), N = 15 (dot-dashed line), N = 30 (dashed line) and N = 50 (dotted line) with
T = 0.01.

One can check their equivalence with the results of [24], where the elements of the density
matrix (28) are shown to be explicitly given by

a± = N2 − 2N + 4
〈
J 2

z

〉± 4(N − 1)〈Jz〉
4N(N − 1)

, (29)

b = N2 − 4
〈
J 2

z

〉
4N(N − 1)

, (30)

c = 〈J+J− + J−J+〉 − N

2N(N − 1)
, (31)

where the thermal average is defined as 〈L〉 ≡ trN {LρN(0)}.
The main aim here is to investigate the pairwise thermal entanglement in the

Lipkin–Meshkov–Glick model. From figures 7 and 8, we can see that, even at nonzero
temperature, the concurrence is still sensitive to the phase of the system. Clearly, the above
quantity strongly depends on both the temperature and the number of spins of the system.
It turns out that, at sufficiently low T (N), there exists a threshold N0 (T0) above which the
pairwise concurrence becomes identically equal to zero. The values of N0 and T0 depend,
however, on the temperature and the number of spins, respectively. Moreover, the concurrence
displays, in the broken phase, oscillations in the form of steps whose amplitudes increase with
the increase of h. Within the latter phase, C(ρ) also exhibits a peak which rapidly falls to
zero in the neighborhood of the critical point hc. At slightly higher T, we can see that the
accompanying oscillations together with the peak disappear; in this case, the concurrence is
a monotonic decreasing function of the strength of the magnetic field. As N increases, C(ρ)

decreases until it becomes practically independent of h in the symmetry broken phase. For
sufficiently large h, the concurrence is obviously zero since the state of the system is, to a
good approximation, equal to its fully polarized ground state. Finally, note that the behavior
of the mean value of Sz, the purity and the von Neumann entropy is quite similar to that of the
one-particle case.

At zero temperature, the derivative of the concurrence with respect to h is expected to
display divergence at the critical point. However, for small N, even at zero temperature, the

9



J. Phys. A: Math. Theor. 41 (2008) 135302 Y Hamdouni

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.05

0.10

0.15

0.20

h

C
(ρ

)

Figure 8. The pairwise thermal entanglement as a function of h at different values of T: T = 0.01
(solid line), T = 0.03 (dot-dashed line), T = 0.08 (dashed line) and T = 0.1 (dotted line) with
N = 10.

0.80 0.85 0.90 0.95 1.00 1.05 1.10
− 50

− 40

− 30

− 20

− 10

0

h

D
(ρ

)

Figure 9. The derivative of concurrence as a function of h for N = 10 and T = 0.001.

concurrence vanishes at h0 and not at hc = −g. This is illustrated in figure 9 where the
variation of D(ρ) = dC(ρ)

dh
as a function of h is shown for N = 10 and T = 0.001; note that

the concurrence vanishes in the neighborhood of h = 0.9, which is exactly the value of h0

when T → 0. It is worth mentioning that the behavior of ground state entanglement (i.e.
zero-temperature entanglement) of multi-spin system displaying quantum phase transition can
be treated within the framework of density functional theory as shown in [28].

3. Coherence and concurrence dynamics

In this section we investigate the dynamics of the central spin system, assuming that its
coupling constant to the bath, which we denote by α, is different from g. The former will

10



J. Phys. A: Math. Theor. 41 (2008) 135302 Y Hamdouni

be rescaled, as usual, by
√

N to ensure an extensive free energy. The Hamiltonian operator
describing the interaction between the two systems reads

HI = α√
N

[
S0

+J− + S0
−J+

]
, (32)

where �S0 stands for the spin operator vector of the central system. Here, we use the notation
�J for the total spin instead of �J for convenience. In order to determine the exact analytical
form of the time evolution operator, U(t), governing the unitary dynamics of the full system,
we note that it satisfies the equation [29]

i
dU(t)

dt
= (H0 + HI + H)U(t), (33)

with H0 = hS0
z . Then the matrix elements of U(t) can be determined, for both one and two

central spins, using the same method presented above. However, we shall not go through the
details of the calculations since it is sufficient to make the replacement

β → it, (34)

and to take into account the fact that the coupling constants are different. In the case of a
single central spin one can find that in C

2

U11(t) = e−itG1

⎧⎨
⎩cos

⎡
⎣t

√(( g

N

)(
Jz − 1

2

))2

+
α2

N
J+J−

⎤
⎦

+
ig/N

(
Jz − 1

2

)
√((

g

N

)(
Jz − 1

2

))2
+ α2

N
J+J−

sin

⎡
⎣t

√(( g

N

)(
Jz − 1

2

))2

+
α2

N
J+J−

⎤
⎦
⎫⎬
⎭ , (35)

U22(t) = e−itG2

⎧⎨
⎩cos

⎡
⎣t

√(( g

N

)(
Jz +

1

2

))2

+
α2

N
J−J+

⎤
⎦

− ig/N
(
Jz + 1

2

)
√((

g

N

)(
Jz + 1

2

))2
+ α2

N
J−J+

sin

⎡
⎣t

√(( g

N

)(
Jz +

1

2

))2

+
α2

N
J−J+

⎤
⎦
⎫⎬
⎭ , (36)

U12(t) = J+
−i(α/

√
N) e−iG2√[

g

N

(
Jz + 1

2

)]2
+ α2

N
J−J+

sin

⎧⎨
⎩t

√[
g

N

(
Jz +

1

2

)]2

+
α2

N
J−J+

⎫⎬
⎭ , (37)

U21(t) = J−
−i(α/

√
N) e−iG1√[

g

N

(
Jz − 1

2

)]2
+ α2

N
J+J−

sin

⎧⎨
⎩t

√[
g

N
(Jz − 1

2
)

]2

+
α2

N
J+J−

⎫⎬
⎭ . (38)

The coherence of the central system which is assumed to be initially decoupled from the bath
is then given by

S0
−(t) = 1

Z
trN {U(t)(S0

−(0) ⊗ e−βH )U†(t)} = 
(t)S0
−(0), (39)

where


(t) = 1

Z
trN

[
U11(t)e

−βHU
†
22(t)

]
. (40)

11



J. Phys. A: Math. Theor. 41 (2008) 135302 Y Hamdouni

In the case of the two-qubit central system, we only consider the evolution in time
of the maximally entangled state |1, 0〉 = 1√

2
(|01〉 + |10〉); other cases can be treated in

exactly the same manner. It can be shown that the time-dependent reduced density matrix
corresponding to the above initial state is diagonal in C

3, with the matrix elements [25]
ρ��(t) = trN [U�2ρN(0)U

†
�2] where

U22(t) = e−it[g/N(J 2−J 2
z )+hJz]

3∑
k=1

erk t

Hk

[( g

N

)2 (
1 − 4J 2

z

)
+ 2i

g

N
rk − r2

k

]
, (41)

U12(t) = −
√

2α√
N

J+ e−it[g/N(J 2−J 2
z )+hJz]

3∑
k=1

erk t

Hk

[( g

N

) (
1 − 2J 2

z

)
+ irk

]
, (42)

U32(t) = −
√

2α√
N

J− e−it[g/N(J 2−J 2
z )+hJz]

3∑
k=1

erk t

Hk

[( g

N

) (
1 + 2J 2

z

)− irk

]
. (43)

Here, Hk = (
g

N

)2(
1 − 4J 2

z

) − 4α2/N(J+J− − Jz) + 4i g

N
rk − 3r2

k ; the quantities rk are the
solutions of the equation

r3 − 2g/Nr2 +

[
4
( g

N

)2 (
4J 2

z − 1
)

+ 4
α2

N
(J+J− − Jz)

]
r

+ 4iα2(g/N3)
(
Jz − 2J 2

z − J+J−
) = 0. (44)

They are explicitly given by

r1 = 1

3R
[2iRg/N − (K − R2)], (45)

r2 = 1

6R
[4iRg/N + (1 + i

√
3)(K + iR2)], (46)

r3 = 1

6R
[4iRg/N + (K − R2) − i

√
3(K + R2)], (47)

where

K = 12(α2/N)(J+J− − Jz) + (g/N)2
(
1 + 12J 2

z

)
, (48)

and

R = [
iQg/N + 1

2

√
4K3 − 4(g/N)2Q2

]1/3
, (49)

with

Q = (g/N)2
(− 1 + 36J 2

z

)− 18(α2/N)[J+J− + Jz(−1 + 6Jz)]. (50)

The concurrence corresponding to the sate |1, 0〉 is simply given by [25, 30] C(t) =
max{0, 2 max[ρ22,

√
ρ11ρ33] − ρ22 − 2

√
ρ11ρ33}. The evolution in time of both C(t) and the

absolute value of 
(t) is shown in figures 10 and 11. Clearly, the behavior of the above
quantities depends on the phase of the system even though the temperature is different from
zero. This actually becomes more clear as N increases in contrast with the thermal pairwise
entanglement which exists only for small values of N. The change of the behavior of the
concurrence and the coherence is related to the change of the ground state of the bath at
the critical point. Once again we recall that the ground state is characterized by the largest

12
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Figure 10. Time dependence of |
(t)| for different values of h with N = 100 and T = 0.01. The
time variable is given in units of α.
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Figure 11. Contour plot showing the time dependence of C(t) for different values of h with
N = 100 and T = 0.01. The time variable is given in units of α/

√
2.

statistical weight at low temperatures, which means that any perturbation of the latter state
affects the time evolution of the central spins. It can be checked that at high temperatures the
behavior of the reduced density matrix is exactly the same in both phases.

So far we have only considered Heisenberg XY interactions between the central system
and the bath. Let us briefly investigate the case where the couplings are of Ising type.
The corresponding interaction Hamiltonian operator is given by HI = λ√

N
S0

z Jz, where λ is
the coupling constant. One can easily see that the Lipkin–Meshkov–Glick Hamiltonian (1)

13
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Figure 12. Time dependence of |�(t)| at different values of h with N = 100 and T = 0.01; the
time variable is given in units of λ.

commutes with HI , that is [H,HI ] = 0. Therefore, in the case of a single central spin, the
coherence is proportional to the function

�(t) = 1

Z

∑
j,m

ν(N, j) exp

{
2ih t − β[g/N(j (j + 1) − m2) + h m] +

iλt√
N

m

}
(51)

whose dependence on the time and the strength of the magnetic field is illustrated in figure 12.
This reveals that, at low temperatures, the absolute value of �(t) is equal to 1 in the symmetric
phase independently of the values of h. In the case of two central spins, the bell state |1, 0〉 is
found to be decoherence free: its concurrence does not evolve in time. However, the behavior
of the concurrence corresponding to the maximally entangled state 1√

2
(|1, 1〉 + |1,−1〉) is

identical to that of �(t), except that it decays twice faster than the above function. Once
again, we find that the dynamics of the central system depends on the phase of the bath. As
a final remark, note that the sudden change of the concurrence at the critical point above
which it vanishes is quite similar to entanglement sudden death [31, 32]. One should not
take this comparison too seriously since entanglement sudden death corresponds to the time
dependence of entanglement. In our case, however, the parameter that controls the variation
of entanglement is the strength of the magnetic field, externally applied to the spin bath. What
really matters is the difference in the behavior of the dynamics in both phases rather than the
vanishing of the entanglement itself.

4. Summary

In summary, we have investigated the nonzero-temperature dynamics of one and two central
qubits coupled to an isotropic Lipkin–Meshkov–Glick bath near its critical point. We showed
that the reduced density matrix of the central spin system can be exactly derived using an
operator technique that makes use of the underlying symmetries of the model Hamiltonian. It
is found that, at sufficiently low temperatures, the dynamics is sensitive to the phase of the
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bath. This is simply due to the fact that the main contribution to the thermal state of the bath
comes from its ground state. For small values of the number of spins, the pairwise thermal
entanglement clearly signals the existence of the critical point at which the transition occurs.
However, above some threshold values of both the temperature and the number of spins within
the bath, the pairwise thermal entanglement ceases to exist. This turns out to be not the case
when the central spin system is not a part of the bath, i.e. its coupling constant is different form
those of bath spins; here we find that the differences between the behavior of the concurrence
within the two possible phases of the bath become more clear at large values of the number of
spins.

Acknowledgment

The author gratefully acknowledges the financial support from NRF.

Appendix

In the two-spin case, it can be shown that in C
3 ⊕ C the first two diagonal elements of � read

�11 = 2

M4 − M2
exp

{
−β

[ g

N

(
J 2 − 3J 2

z

)
+ h(Jz − 1)

]}
× {[

J+J− + 4(J+J−)2 − 2Jz − 12JzJ+J− + 10J 2
z + 12J+J−J 2

z − 16J 3
z + 8J 4

z

]
× cosh(gβM/N) − M sinh(gβM/N)

[
3J+J− − 2Jz − 4JzJ+J− + 6J 2

z − 4J 3
z

]
+
[
J+J− + 4(J+J−)2 − 4J+J−Jz + 4J+J−J 2

z

]
e

gβ

N

}
, (A.1)

�22 = 4 e
gβ

N

M4 − M2

{[
J+J− + 4(J+J−)2 − Jz − 8J+J−Jz + 4J 2

z J+J− + 4J 2
z (1 − Jz)

]
× cosh(gβM/N) − M sinh(gβM/N)

[
J+J− − Jz + 2J 2

z

]
+ e

gβ

N

[
4J+J−J 2

z + J 2
z + 4J 3

z (Jz − 1)
]}

(A.2)

where M = √
1 − 4Jz + 4J 2

z + 4J+J−. Due to the symmetry, the explicit form of the matrix
element �33 can be obtained from the expression of �11 by simply making the substitution
h → −h. Moreover, since J±|0, 0〉 ≡ 0, then the fourth diagonal element corresponding to C

is simply given by

�44 = exp
{
−β

[ g

N

(
J 2 − J 2

z

)
+ hJz

]}
. (A.3)

Finally, the elements of the two-spin reduced density matrix are given by

ρii = 1

Z

∑
j,m

ν(N − 2, j)〈j,m|�ii |j,m〉. (A.4)
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